

Organic Chemistry

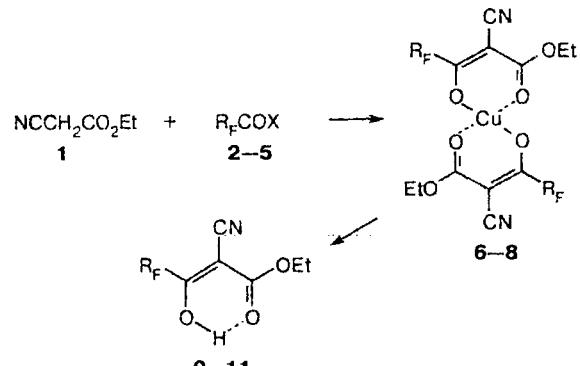
Synthesis of fluorine-containing alkyl 2-cyano-3-oxocarboxylates. Reactions with nucleophiles

O. G. Kuzueva, Ya. V. Burgart, V. I. Saloutin,* and O. N. Chupakhin

Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences,
20 ul. S. Kovalevskoi, 620219 Ekaterinburg, Russian Federation.
Fax: +7 (343 2) 74 5954. E-mail: fc@ioc.uran.ru

Fluorine-containing alkyl 2-cyano-3-oxocarboxylates were synthesized for the first time by the reaction of ethyl cyanoacetate with fluorine-substituted carboxylic acid halides or alkyl carboxylates. The reactions with hydrazine hydrate, phenylhydrazine, and *o*-phenylenediamine give hydrazinium (ammonium) enolates or products of acid decomposition.

Key words: alkyl perfluoro-2-cyano-3-oxocarboxylates, acylation, condensation, hydrazine hydrate, phenylhydrazine, *o*-phenylenediamine, salt formation, acid decomposition.


Ethyl 2-cyanoacetoacetate can be obtained by the reactions of sodium ethyl acetoacetate with CICN^1 or of ethyl cyanoacetate (**1**) with ketene.^{2,3} The most common and convenient method for the synthesis of this 2-cyano-3-oxo ester and its nonfluorinated analogs is acylation of ester **1** with the corresponding acid chlorides^{4,5} and anhydrides.⁶ Ethyl 2-cyanoacetoacetate reacts with NH_3 , EtNH_2 ,¹ and semicarbazide⁴ to give azomethines in the form of β -aminocrotonic acid derivatives. Literature data on the synthesis of fluorine-containing alkyl 2-cyano-3-oxocarboxylates and their reactivity are lacking.

The goal of the present investigation is to obtain new esters of fluorinated 3-oxocarboxylic acids. Among the representatives of this class and their derivatives, many substances were found to possess useful properties for practical purposes. Ethyl perfluoro-2-cyano-3-oxocarboxylates and their copper chelates were synthesized for the first time, and their reactions with N-nucleophiles (hydrazine hydrate, phenylhydrazine, and *o*-phenylenediamine) were studied.

One of the methods of the synthesis of fluorinated alkyl 2-cyano-3-oxocarboxylates is the Claisen condensation of ester **1** with ethyl fluorocarboxylates (**2** and **3**)

in the presence of Na (Scheme 1). The corresponding esters (**9** and **10**) are isolated and purified *via* copper chelates (**6** and **7**) (Table 1).

Scheme 1

Table 1. Main characteristics of the compounds synthesized

Compound	M.p. /°C	Yield (%)	Found Calculated (%)				Molecular formula	IR, ν/cm ⁻¹	NMR (DMSO-d ₆), δ (J/Hz)	
			S	H	F	N			¹ H	¹⁹ F
6	>200 (MeOH)	70	35.10 2.08 23.85 5.76 35.05 2.10 23.76 5.84	(C ₇ H ₅ F ₃ NO ₃) ₂ Cu	1635 (CO ₂ Et); 1530 (C=C); 2210 (CN)					
7	191 (MeOH)	48 (A) 66 (B)	30.2 1.15 43.67 3.21 30.8 1.29 43.85 3.59	(C ₁₀ H ₅ F ₉ NO ₃) ₂ Cu	1635 (CO ₂ Et); 1525 (C=C); 2230 (CN)					
8	196	53	42.65 1.43 27.85 4.15 42.65 1.49 28.10 4.14	(C ₁₂ H ₅ F ₅ NO ₃) ₂ Cu	1620 (CO ₂ Et); 1510–1480 (C=C); 2220 (CN)					
9	— [*]	95	40.29 2.89 27.42 6.82 40.20 2.89 27.25 6.70	C ₇ H ₆ F ₃ NO ₃	2700 (OH); 2230 (CN); 1675 (CO ₂ Et); 1620 (C=C)	1.42 (t, 3 H, OCH ₂ Me, J = 7.1); 4.47 (q, 2 H, OCH ₂ Me, J = 7.1); 13.40 (br.s, 1 H, OH)		91.46 (s, CF ₃)		
10	— [*]	92	33.30 1.59 47.95 3.79 33.44 1.68 47.61 3.90	C ₁₀ H ₆ F ₉ NO ₃	2700 (OH); 2230 (CN); 1670 (CO ₂ Et); 1610 (C=C)	1.43 (t, 3 H, OCH ₂ Me, J = 7.1); 4.48 (q, 2 H, OCH ₂ Me, J = 7.1); 13.80 (br.s, 1 H, OH)				
11	30–31 (CHCl ₃)	94	47.03 2.14 30.59 4.53 46.92 1.97 30.92 4.56	C ₁₂ H ₆ F ₅ NO ₃	2650 (OH); 2230 (CN); 1655 (CO ₂ Et); 1600 (C=C _{enol}); 1520–1460 (C=C _{arom})	1.44 (t, 3 H, OCH ₂ Me, J = 7.1); 4.47 (q, 2 H, OCH ₂ Me, J = 7.1); 14.45 (br.s, 1 H, OH)		24.73 (m, 2 F); 15.14 (m, 1 F); 8.87 (m, 2 F)		
12	129–130 (CHCl ₃ — MeOH)	96	34.83 4.03 16.88 23.04 34.86 4.18 17.42 23.63	C ₇ H ₁₀ F ₃ N ₃ O ₃	3300–3180, 2700, 1580 (NH); 2195 (CN); 1690 (CO ₂ Et); 1530 (C=C)	1.14 (t, 3 H, OCH ₂ Me, J = 7.3); 3.96 (q, 2 H, OCH ₂ Me, J = 7.3); 6.8 (br.s, 5 H, NH)				
14	— [*]	77	41.06 3.24 26.68 8.90 41.13 3.02 36.59 8.99	C ₁₆ H ₁₄ F ₉ N ₃ O ₃	3270, 2720, 1600 (NH); 2210 (CN); 1680 (CO ₂ Et); 1570–1500 (C=C)	1.09 (t, 3 H, OCH ₂ Me, J = 7.1); 3.98 (q, 2 H, OCH ₂ Me, J = 7.1); 7.03 (m, 5 H, Ph); 9.9 (br.s, 2 H, NH)		82.09 (m, 3 F, CF ₃); 9.34 (m, 2 F, CF ₂); 40.91 (m, 2 F, CF ₂); 37.73 (m, 2 F, CF ₂)		
15	125–126 (CHCl ₃)	72	52.08 3.36 10.14 22.90 52.06 3.40 10.12 22.87	C ₁₈ H ₁₄ F ₅ N ₃ O ₃	3210, 2670, 1600 (NH); 2215 (CN); 1660 (CO ₂ Et); 1550, 1500 (C=C)	1.04 (t, 3 H, OCH ₂ Me, J = 7.1); 3.86 (q, 2 H, OCH ₂ Me, J = 7.1); 7.15 (m, 5 H, Ph); 9.99 (br.s, 5 H, Ph)		17.42 (m, 2 F); 3.64 (m, 1 F); 1.23 (m, 2 F)		
16	128–129	77	49.34 4.57 18.30 13.22 49.31 4.45 17.96 13.24	C ₁₃ H ₁₄ F ₃ N ₃ O ₃	3340–3070, 2590, 1580 (NH); 2180 (CN); 1690 (CO ₂ Et); 1630, 1550, 1490 (C=C)	1.14 (t, 3 H, OCH ₂ Me, J = 7.1); 3.96 (q, 2 H, OCH ₂ Me, J = 7.1); 7.6 (br.s, 5 H, NH); 6.93 (m, 4 H, C ₆ H ₄)				
17	144–145	67	40.81 2.72 36.83 8.98 41.13 3.02 36.59 8.99	C ₁₆ H ₁₄ F ₉ N ₃ O ₃	3380, 3310, 3090, 2660, 2590, 1570 (NH); 2210 (CN); 1660 (CO ₂ Et); 1625, 1500, 1480 (C=C)	1.18 (t, 3 H, OCH ₂ Me, J = 7.0); 3.87 (q, 2 H, OCH ₂ Me, J = 7.0); 7.0 (br.s, 5 H, NH); 6.9 (m, 4 H, C ₆ H ₄)				

^{*} Oil.

The acylation of ester **1** with fluorocarboxylic acid halides was also used to synthesize the target fluorine-containing alkyl 2-cyano-3-oxocarboxylates. Thus the reaction of perfluoropentanoyl fluoride **4** with ester **1** in the presence of Et_3N in anhydrous benzene yielded ester **10**, which was isolated *via* copper chelate **7** (see Table 1, Scheme 1). Analogously, ester **11** and its copper chelate (**8**) were obtained by acylating ethyl cyanoacetate with pentafluorobenzoyl chloride (**5**) in the presence of $\text{Mg}(\text{OEt})_2$. The use of Et_3N as a catalyst in this reaction did not result in the expected product.

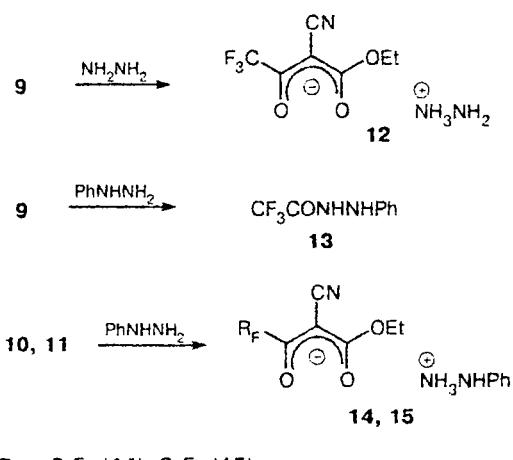
Treatment of chelates **6–8** with gaseous HCl yields free ligands **9–11**.

Compounds **9–11**, like all 1,3-dicarbonyl compounds, exist in both the enol and ketone forms (ketoenol tautomerism). However, the ^{19}F and ^1H NMR spectra of compounds **9–11** (see Table 1) exhibit one set of signals suggesting the presence of only one tautomer in each case. This is enol, which is evidenced by a broadened low-field ^1H singlet for the OH group and no signal for the methine proton. Analysis of IR spectra (see Table 1) also confirms the enol structure of fluorine-containing 2-cyano-3-oxocarboxylic acid esters.

Thus, we established that, in contrast to nonsubstituted esters of fluorinated 3-oxocarboxylic acids where the degree of enolization depends on the structure of a fluorinated substituent,⁷ 2-cyano esters **9–11** exist exclusively in the form of enols, irrespective of the nature of the fluorinated radical. It is noteworthy that the degree of enolization of ethyl 2-cyanoacetoacetate, a nonfluorinated analog of compound **9**, is 93%.² All the aforesaid correlates with the well known fact that the introduction of electron-withdrawing groups into α - and γ -positions of 1,3-dicarbonyl compounds sharply increases the content of the enol form.⁷

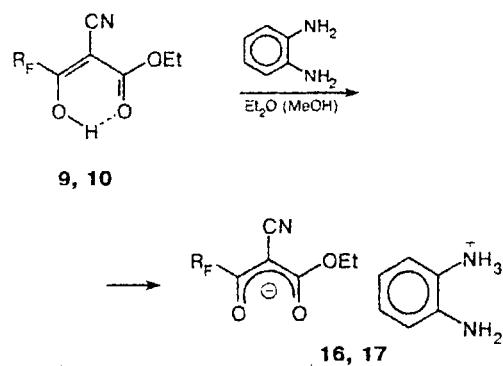
^1H NMR signals for the enol protons in compounds **9–11** are shifted downfield (δ 13.40–14.45) as compared to those in nonsubstituted 3-oxo esters (δ 11.92–11.90⁸). This paramagnetic shift can be explained by the effect of an electron-withdrawing substituent in position 2 (see Ref. 2).

The $\text{C}=\text{O}$ and $\text{C}=\text{C}$ absorption bands in the IR spectra of compounds **9–11** are shifted to the lower-frequency region by 15–40 cm^{-1} as compared to those in the IR spectra of fluorinated 3-oxo esters,⁸ which is due to the stabilization of (and, accordingly, the strengthening of the bonds in) the chelate ring because of the effect of the electron-withdrawing α -cyano group.⁹ The IR spectra of esters **9–11** recorded in CHCl_3 and in a thin film are virtually alike, which attests to a minor contribution of intermolecular interactions between the enol OH groups.

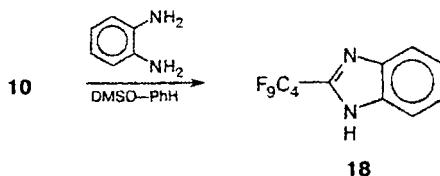

Thus, the intramolecular hydrogen bonds in fluorine-containing 2-cyano-3-oxocarboxylates are stronger than those in the corresponding nonsubstituted 3-oxo esters.

Ester **9** reacts with hydrazine hydrate in Et_2O or MeOH to give salt **12** (Scheme 2, Table 1), while oxo

ester **11** does not react with hydrazine hydrate. Under more drastic conditions (refluxing in benzene, AcOH , fusion), the reactions of compounds **9** and **11** with hydrazine hydrate yield a mixture of products that are difficult to separate.


The results of reactions of oxo esters **9–11** with PhNHNH_2 depend on the structure of a fluorinated substituent. For example, 2-cyanotrifluoroacetoacetate **9**, when refluxed with PhNHNH_2 in Et_2O , undergoes acid decomposition with elimination of trifluoroacetic

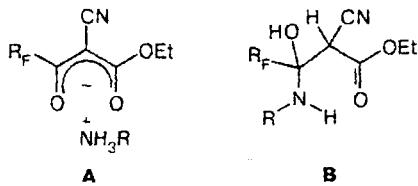
Scheme 2



$\text{R}_F = \text{C}_4\text{F}_9$ (**14**), C_6F_5 (**15**)

Scheme 3

$\text{R}_F = \text{CF}_3$ (**9, 16**), C_4F_9 (**10, 17**)


acid, which gives phenylhydrazide **13** under the reaction conditions (see Scheme 2, Table 1) identical with an authentic sample.^{10,11} 3-Oxo esters **10** and **11** react with PhNHNH_2 in Et_2O or MeOH to form salts **14** and **15** (see Scheme 2, Table 1).

The acid decomposition observed in the reaction of oxo ester **9** with phenylhydrazine may be due to the easier elimination of a fluorocarboxylic acid containing the shorter (as compared to nonafluorobutyl and pentafluorophenyl analogs) trifluoromethyl substituent, which correlates well with the literature data.^{12–14}

The pathways of reactions of oxo esters **9** and **10** with *o*-phenylenediamine depend on the reaction conditions. Thus refluxing in Et_2O or MeOH yields salts **16** and **17** (Scheme 3, Table 1), while heating oxo ester **10** with *o*-phenylenediamine in a benzene–DMSO mixture results in an acid decomposition product, namely, benzimidazole **18** (see Scheme 3), whose physicochemical characteristics correspond to the published data.¹⁴

Oxo ester **11**, even under mild conditions (Et_2O or MeOH , 20 °C), reacts with *o*-phenylenediamine to give a mixture of products which are difficult to identify.

Compounds **12** and **14–17** are stable and do not undergo any transformations under prolonged heating *in vacuo* or under refluxing in toluene, even in the presence of TsOH . The structure of both salts (**A**) and the addition products of amine at the ketone carbonyl group of the oxo ester without elimination of water (**B**) may be assigned to them. Note that nonfluorinated alkyl 2-cyano-3-oxocarboxylates react with nucleophiles to give imines, while fluorinated compounds in such reactions yield addition products.^{15–17} However, the ^1H NMR spectra of these compounds do not contain signals for the methine protons, which would be present in the case of structure **B**; in contrast, their IR spectra exhibit absorption bands at 3000–2700 cm^{-1} characteristic of an ammonium group, which is in favor of structure **A**. In addition, treatment of salt **14** with an aqueous solution of copper acetate gives copper chelate of the initial ligand **7**. All of these data are in favor of the salt structure **A** for compounds **12** and **14–17**.

Thus, there is a competition between salt formation and acid decomposition in the reactions of fluorinated alkyl 2-cyano-3-oxocarboxylates with amines, whereas 3-oxo esters and their α -substituted analogs react with diamines to give heterocyclic compounds.^{7,15–17} It is known that the presence of electron-withdrawing α -substituents in fluorinated 3-oxo esters favors their acid decomposition. Thus esters of fluorine-containing 2-acyl-3-oxocarboxylic acids re-

act with NH_2NH_2 , PhNH_2 , $\text{NH}_2\text{CH}_2\text{CH}_2\text{NH}_2$, and *o*-phenylenediamine to undergo acid decomposition into derivatives of fluorocarboxylic acids, *viz.*, amides and 2-fluoroalkylbenzimidazoles.^{12,13} In the case of fluorinated alkyl 2-cyano-3-oxocarboxylates, salt formation becomes predominant, probably, because of a sharp increase in their acidity (pK_a of ethyl acetoacetate, ethyl 2-cyanoacetoacetate, and ethyl trifluoroacetoacetate are equal to 12.6, 6.0 (see Ref. 15), and 7.4 (see Ref. 7), respectively).

Thus, we showed in this work that the introduction of the electron-withdrawing cyano group into α -position of fluorinated 3-oxo esters basically changes the reactivity of these compounds.

Experimental

IR spectra were recorded on a Specord 75-IR spectrometer in the range 400–4000 cm^{-1} (thin film or Vaseline oil suspension). ^1H (80 MHz, relative to SiMe_4) and ^{19}F (75 MHz, relative to C_6F_6) NMR spectra were recorded on a Tesla BS-587 A spectrometer. Elemental analysis was performed with the use of a Carlo Erba CHNS-O EA 1108 analyzer. The properties of the compounds synthesized are presented in Table 1.

Bis(ethyl 2-cyano-4,4,4-trifluoro-3-hydroxybut-2-enoato)-copper (6). A solution of ethyl trifluoroacetate **2** (11.3 g, 0.1 mol) and ethyl cyanoacetate (**1**) (11.3 g, 0.1 mol) in 100 mL of anhydrous Et_2O was added rapidly to metallic sodium (2.5 g, 0.11 g-at.). After the exothermic reaction ceased, the reaction mixture was poured into a saturated aqueous solution of $\text{Cu}(\text{OAc})_2$ (9.1 g, 0.05 mol). The precipitate that formed was filtered off and recrystallized from MeOH to give chelate **6** (16.8 g).

Bis(ethyl 2-cyano-4,4,5,5,6,6,7,7,7-nonafluoro-3-hydroxyhept-2-enoato)copper (7). *A.* Similar reaction of ethyl perfluorovalerate **3** (29.2 g, 0.1 mol) with ester **1** (11.3 g, 0.1 mol) in the presence of metallic Na (2.5 g, 0.11 g-at.) afforded chelate **7** (18.7 g).

B. Perfluoropentanoyl fluoride **4** (26.6 g, 0.1 mol) was added dropwise with stirring at 0–10 °C to a solution of ester **1** (11.3 g, 0.1 mol) and Et_3N (11.1 g, 0.1 mol) in 60 mL of anhydrous benzene. The reaction mixture was stirred at 0–10 °C for 1 h, kept at 20 °C for 12 h, and then poured into a mixture of conc. H_2SO_4 (10 mL) and ice (100 g). The benzene layer was separated, and the products from the aqueous layer were extracted with benzene (2×50 mL). The organic phases were combined and washed with water (3×50 mL), and the solvent was removed. The residue was treated with a saturated aqueous solution of $\text{Cu}(\text{OAc})_2$ (9.1 g, 0.05 mol) and recrystallized from MeOH to give product **7** (25.7 g).

Bis(ethyl 2-cyano-3-hydroxy-3-pentafluorophenylprop-2-enoato)copper (8). Magnesium cuttings (2.7 g, 0.11 g-at.) were mixed with 1,2-dibromoethane (0.3 mL) in 5 mL of anhydrous EtOH . After beginning of a vigorous reaction, anhydrous EtOH (7 mL) and 50 mL of anhydrous benzene were added. After the magnesium was consumed completely, ester **1** (11.3 g, 0.1 mol) was added dropwise, and the reaction mixture was stirred at 60 °C for 1 h. Then, a solution of pentafluorobenzoyl chloride **5** (22 g, 0.1 mol) in 50 mL of anhydrous benzene was added, and stirring was continued at 20 °C for 1 h and at 50 °C for 15 min. The reaction mixture was cooled to 5–10 °C, and a solution of conc. H_2SO_4 (5.4 mL) in 32 mL of water was added. The benzene layer was separated, the solvent was re-

moved, and the residue was treated with $\text{Cu}(\text{OAc})_2$ to give product **8** (17.9 g).

Ethyl 2-cyano-4,4,4-trifluoro-3-hydroxybut-2-enoate (9). A flow of HCl was passed through a suspension of compound **6** (24 g, 0.1 mol) in Et_2O until the green color of the solution disappeared. The precipitate that formed was filtered off, and the filtrate was concentrated and chromatographed on Si_2O in CHCl_3 to give compound **9** (19.9 g).

Ethyl 2-cyano-4,4,5,5,6,6,7,7,7-nonafluoro-3-hydroxyhept-2-enoate (10) and **ethyl 2-cyano-3-hydroxy-3-pentafluoroprop-2-enoate (11)** were obtained analogously.

Hydrazinium ethyl 2-cyano-4,4,4-trifluoro-3-hydroxybut-2-enoate (12). $\text{NH}_2\text{NH}_2 \cdot \text{H}_2\text{O}$ (0.5 g, 10 mmol) was added to a solution of compound **9** (2.09 g, 10 mmol) in 20 mL of Et_2O . The salt that formed was filtered off and recrystallized from a $\text{CHCl}_3\text{-MeOH}$ (10 : 1) mixture, yield 2.26 g.

N^2 -Phenyltrifluoroacetohydrazine (13). A mixture of compound **9** (2.09 g, 10 mmol) and PhNHNH_2 (1.08 g, 10 mmol) was refluxed for 3 h in 20 mL of Et_2O . The solvent was removed, and the residue was reprecipitated with hexane from benzene to give product **13** (1.43 g, 78%), m.p. 130–132 °C (cf. Ref. 10).

Phenylhydrazinium ethyl 2-cyano-4,4,5,5,6,6,7,7,7-nonafluoro-3-hydroxyhept-2-enoate (14). A mixture of compound **10** (3.9 g, 10 mmol) and phenylhydrazine (1.08 g, 10 mmol) was refluxed in 20 mL of Et_2O for 1 h. The ether was removed, and the residual oil was washed with CHCl_3 to give product **14** (3.6 g).

Phenylhydrazinium salt of ethyl 2-cyano-3-hydroxy-3-pentafluorophenylprop-2-enoate (15) was obtained similarly.

2-Aminoanilinium ethyl 2-cyano-4,4,4-trifluoro-3-hydroxybut-2-enoate (16). A mixture of compound **9** (2.09 g, 10 mmol) and α -phenylenediamine (1.08 g, 10 mmol) was refluxed in 20 mL of Et_2O for 1 h. The precipitate that formed was filtered off and washed with hot CHCl_3 to give salt **16** (3.04 g).

2-Aminoanilinium salt of ethyl 2-cyano-4,4,5,5,6,6,7,7,7-nonafluoro-3-hydroxyhept-2-enoate (17). A mixture of compound **10** (3.59 g, 10 mmol) and α -phenylenediamine (1.08 g, 10 mmol) was refluxed in MeOH for 1 h. The product was precipitated with water from MeOH , filtered off, and washed with hot CHCl_3 to give compound **17** (3.13 g).

2-Nonafluorobutylbenzoimidazole (18). A mixture of compound **10** (3.59 g, 10 mmol) and α -phenylenediamine (1.08 g, 10 mmol) was heated in a mixture of benzene (20 mL) and DMSO (4 mL) for 5 h. The benzene was removed, and the product was precipitated with water from DMSO and recrystallized to give product **18** (2.3 g, 61%), m.p. 178–179 °C (cf. Ref. 15).

References

1. *Beilstein Handbuch*, 1921, 3, 796.
2. J. L. Burdett and M. T. Rogers, *J. Am. Chem. Soc.*, 1964, **86**, 2105.
3. T. Isoshima and N. Kagaku, *Nippon Kagaku Zasshi*, 1956, **77**, 425; *Chem. Abstrs.*, 1958, **52**, 8948f.
4. I. Hori and H. Midorikawa, *Sci. Papers Inst. Phys. Chem. Res.*, 1956, **56**, 216; *Chem. Abstrs.*, 1963, **58**, 3311d.
5. US Pat. 2 534 112, *Chem. Abstrs.*, 1951, **45**, 3163d.
6. A. Michael and O. Eckstein, *Ber.*, 1905, 50.
7. K. I. Pashkevich and V. I. Saloutin, *Usp. Khim.*, 1985, **54**, 1997 [*Russ. Chem. Rev.*, 1985, **54** (Engl. Transl.)].
8. V. I. Saloutin, Z. E. Skryabina, M. N. Rudaya, and K. I. Pashkevich, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1984, 1106 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1984, **33**, 1016 (Engl. Transl.)].
9. L. A. Kazitsina and N. B. Kupletskaya, *Primenenie UF-, IK-, YaMR- i mass-spektroskopii v organicheskoi khimii [Application of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry]*, MGU, Moscow, 1979, 72 (in Russian).
10. I. D. Kalikhman, E. N. Medvedeva, D. F. Kushnarev, T. I. Yushmanova, and V. A. Lopyrev, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1980, 2735 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1980, **29**, 1911 (Engl. Transl.)].
11. M. G. Voronkov, G. I. Sarapulova, I. I. Chipanina, E. N. Medvedeva, T. I. Yushmanova, V. A. Lopyrev, and Yu. L. Frolov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1980, 2739 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1980, **29**, 1915 (Engl. Transl.)].
12. K. I. Pashkevich, V. M. Krokalev, and V. I. Saloutin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1988, 1367 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1988, **37**, 1202 (Engl. Transl.)].
13. V. M. Krokalev, V. I. Saloutin, A. D. Romas', B. A. Ershov, and K. I. Pashkevich, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1990, 376 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1990, **39**, 316 (Engl. Transl.)].
14. A. L. Kurts, P. I. Dem'yanov, I. P. Beletskaya, and O. A. Reutov, *Vestn. Mosk. Univ. (Proceedings of Moscow State University)*, 1974, **15**, 597 (in Russian).
15. K. I. Pashkevich, Z. E. Skryabina, and V. I. Saloutin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1987, 2527 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1987, **36**, 2347 (Engl. Transl.)].
16. Z. E. Skryabina, Ya. V. Burgart, and V. I. Saloutin, *Zh. Org. Khim.*, 1997, **33**, 442 [*Russ. J. Org. Chem.*, 1997, **33** (Engl. Transl.)].
17. O. G. Kuzueva, Ya. V. Burgart, and V. I. Saloutin, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 695 [*Russ. Chem. Bull.*, 1998, **47**, 673 (Engl. Transl.)].

Received November 25, 1998;
in revised form March 10, 1999